Powered Exoskeletons:"Get Super strength and endurance."
The concept of mechanically-powered exoskeleton seems to be a part of sci-fi thriller of '80s or '90s ,but in the coming years it might be helping us to improve our daily lives.
A powered exoskeleton, also known as powered armor, exoframe, or exosuit, is a mobile machine consisting primarily of an outer framework (akin to an insect's exoskeleton) worn by a person, and powered by a system of motors or hydraulics that delivers at least part of the energy for limb movement.
One of the proposed main uses for an exoskeleton would be enabling a soldier to carry heavy objects (80–300 kg) while running or climbing stairs. Not only could a soldier potentially carry more weight, he could presumably wield heavier armor and weapons. Most models use a hydraulic system controlled by an on-board computer. They could be powered by an internal combustion engine, batteries or potentially fuel cells. Another area of application could be medical care, nursing in particular. Faced with the impending shortage of medical professionals and the increasing number of people in elderly care, several teams of Japanese engineers have developed exoskeletons designed to help nurses lift and carry patients.Exoskeletons could also be applied in the area of rehabilitation of stroke or Spinal cord injury patients. Such exoskeletons are sometimes also called Step Rehabilitation Robots.
Working prototypes of powered exoskeletons, including XOS by Sarcos, and HULC by Lockheed Martin (both meant for military use), have been constructed but have not yet been deployed in the field. Several companies have also created exosuits for medical use,including the HAL 5 by Cyberdyne Inc.
Various problems remain to be solved, the most daunting being the creation of a compact power supply powerful enough to allow an exoskeleton to operate for extended periods without being plugged into external power.But in all , exoskeletons can be considered a great and helpful invention.
A powered exoskeleton, also known as powered armor, exoframe, or exosuit, is a mobile machine consisting primarily of an outer framework (akin to an insect's exoskeleton) worn by a person, and powered by a system of motors or hydraulics that delivers at least part of the energy for limb movement.
One of the proposed main uses for an exoskeleton would be enabling a soldier to carry heavy objects (80–300 kg) while running or climbing stairs. Not only could a soldier potentially carry more weight, he could presumably wield heavier armor and weapons. Most models use a hydraulic system controlled by an on-board computer. They could be powered by an internal combustion engine, batteries or potentially fuel cells. Another area of application could be medical care, nursing in particular. Faced with the impending shortage of medical professionals and the increasing number of people in elderly care, several teams of Japanese engineers have developed exoskeletons designed to help nurses lift and carry patients.Exoskeletons could also be applied in the area of rehabilitation of stroke or Spinal cord injury patients. Such exoskeletons are sometimes also called Step Rehabilitation Robots.
Working prototypes of powered exoskeletons, including XOS by Sarcos, and HULC by Lockheed Martin (both meant for military use), have been constructed but have not yet been deployed in the field. Several companies have also created exosuits for medical use,including the HAL 5 by Cyberdyne Inc.
Various problems remain to be solved, the most daunting being the creation of a compact power supply powerful enough to allow an exoskeleton to operate for extended periods without being plugged into external power.But in all , exoskeletons can be considered a great and helpful invention.
No comments:
Post a Comment